The Mössbauer Effect of ¹¹⁹Sn in the Dimethylbis(8-quinolinolato)tin(IV) Single Crystal

Hisao Negita,* Ryukei Boku, and Sumio Ichiba

Department of Chemistry, Faculty of Science, Hiroshima University, Hiroshima 730 (Received June 8, 1979)

Synopsis. The Mössbauer absorption spectrum of ¹¹⁹Sn in the single crystal of dimethylbis(8-quinolinolato)tin-(IV) was studied by an intensity-tensor method. The orientation of the principal axes of the electric-field gradient (EFG) was discussed from the point of view of point-charge formalism.

For the octahedral coordination, all the signs of V_{zz} , the principal component of EFG, are in good agreement with those to be expected from the point-charge formalism with the exception of the cis configuration. 1-4) From the magnetic perturbation study of a powder dimethylbis(8-quinolinolato)tin(IV), $Sn(Me)_2(oxin)_2$, which has a distorted cis-octahedral configuration, Parison and Johnson⁴⁾ have proposed that this inconsistency comes from a deviation from a regular octahedral geometry. The sign of V_{zz} as well as the orientation of the EFG axes can be inferred from the single crystal absorption spectra. 5-10) The purpose of the present study is to examine their proposition in more detail by means of Mössbauer experiments on the single crystal of $Sn(Me)_2(oxin)_2$. The method employed here was first suggested by Zimmermann and applied by him to FeCl₂·4H₂O,¹¹⁾ and recently it has also been applied to Fe(NH₄)₂(SO₄)₂·6H₂O.¹²⁾ It is based on the fact that the quadrupole line intensities can be characterized by means of an intensity tensor.

Crystal Structure and Experimental

 $\mathrm{Sn}(\mathrm{Me})_2(\mathrm{oxin})_2$ has monoclinic symmetry, and its space group is $\mathrm{P2}_1/\mathrm{c.}^{13}$. The dimensions of the unit cell are a=9.44, b=13.28, and c=15.67 Å, with $\beta=110.0^\circ$. A unit cell consists of four $\mathrm{Sn}(\mathrm{Me})_2(\mathrm{oxin})_2$ molecules, as is shown in Fig. 1. These four molecules can be grouped into two sites, I and II, with different orientations of the EFG relative to the crystal axes. The symmetry relation between Site I and Site II is a 180° rotation about the b axis.

A single crystal of the complex was cut parallel to the 001 plane, and a crystal plate of ca. 13×8 mm² was polished to a thin plate, the surface density of which was 27.5 mg of Sn

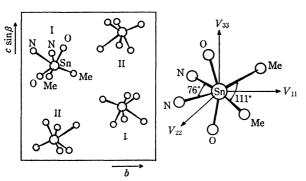


Fig. 1. The molecular geometry of the $SnMe_2N_2O_2$ unit in dimethybis(8-quinolinolato)tin(IV) and the orientations in the unit cell.

per cm². The Mössbauer spectra were obtained in the manner described in our previous paper, 10) except that the absorber was kept at 110 K and the source was $Ca^{119m}SnO_3$.

Results and Discussion

A typical Mössbauer spectrum with computer-fitting Lorenzian curves is shown in Fig. 2. The parameters obtained from these spectra are presented in Table 1. In the table, the values of A^h/A^{tot} , the intensity of the higher energy peak line divided by the total intensity, were obtained from the observed spectra, whereas those of I^h/I^{tot} were calculated from Eq. 1 using a recoilless fraction of f'=0.11, estimated from powder samples:

$$\frac{A^{\rm h}}{A^{\rm tot}} - \frac{1}{2} = F\left(\frac{I^{\rm h}}{I^{\rm tot}} - \frac{1}{2}\right) \tag{1}$$

where $F = [1+0.125 T_a(1-4a^2)]^{-1}$, with $T_a = nf'\sigma_0$, the effective thickness of absorber, and $a = I^h/I^{tot}$.

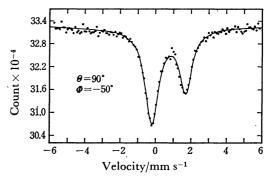


Fig. 2. Mössbauer absorption spectrum of dimethylbis-(8-quinolinolato)tin(IV) single crystal at 110 K. The γ -ray is in the pq plane and -50° from the p axis.

Table 1. Experimental parameters for $Sn(Me)_2(oxin)_2$

$\frac{\Theta^{\mathrm{a}}}{\mathrm{deg.}}$	Ø^{a)} deg.	$A^{ m h}/A^{ m tot}$	$I^{ m h}/I^{ m tot}$
90	-50	0.391 ± 0.012	$0.356 {\pm} 0.015$
90	-40	0.390 ± 0.011	0.360 ± 0.014
90	-30	$0.403 \!\pm\! 0.014$	$0.379 {\pm} 0.016$
90	-20	$0.426 {\pm} 0.015$	$0.409 \!\pm\! 0.018$
90	-10	0.470 ± 0.015	$0.464 {\pm} 0.019$
90	0	$0.504 \!\pm\! 0.014$	$0.505 \!\pm\! 0.017$
90	10	$0.545 {\pm} 0.014$	$0.556 \!\pm\! 0.018$
90	20	$0.570 \!\pm\! 0.014$	$0.586 \!\pm\! 0.017$
90	30	$0.583 \!\pm\! 0.012$	$0.604 \!\pm\! 0.014$
90	50	$0.589 {\pm} 0.010$	0.618 ± 0.013

a) The polar angles of the γ -ray relative to O_{pqr} .

Since the crystal axes, a, b, and c, are not orthogonal with each other, a orthogonal system, O_{pqr} , is introduced. The base vectors, p, q, and r, are parallel to $a \times b$, a, and b respectively. The components of the

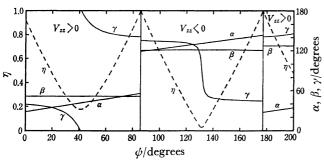


Fig. 3. Sign of V_{zz} , α , β , γ , and η as a function of the parameter ϕ .

macroscopic-intensity tensor obtained by a least-squares analysis from the data of Table 1 are $I_{pp}^m = 0.005 \pm 0.002$, $I_{qq}^m = -0.029 \pm 0.006$, $I_{rr}^m = 0.024 \pm 0.006$, $I_{pq}^m = 0.133 \pm 0.002$, and $I_{pr}^m = I_{qr}^m = 0$. The observable tensor thus has monoclinic symmetry, and two components of the local site tensor are not recorded. However, the introduction of an unknown parameter, ψ (see Ref. 11 for the definition), makes it possible to represent the local intensity tensor. Figure 3 shows the values of the asymmetry parameter (η) and the Euler angles (α, β, γ) , designating the orientation of the principal-axes system of EFG relative to O_{pqr} , as a function of the ψ angle. Although the values of ψ are restricted to $0^{\circ} \leqslant \psi \leqslant 200^{\circ}$, the solutions for $\pi \leqslant \psi \leqslant 2\pi$ are obtained by the following transformation from those for $0 \leqslant \psi \leqslant \pi$:

$$\eta \to \eta$$
, $(\alpha, \beta, \gamma) \to (\alpha, \pi - \beta, \pi - \gamma)$ for $\psi \to \pi + \psi$.

From the point-charge model for cis- R_2SnX_4 structures, it is expected that, for bond angles of R-Sn-R greater than the tetrahedral angle (109.5°), V_{zz} lies on the R-Sn-R plane, and is normal for a bisector of the R-Sn-R, and has the sign opposite to that expected for a regular cis geometry, i.e., a negative sign.⁴

Although the 2Me, 2N, and Sn of the complex are not on a common plane, the local symmetry about the tin in $Sn(Me)_2(oxin)_2$ is approximately C_{2v} . We take an unweighted least-squares plane through the four ligand atoms (2Me and 2N) for the Sn atom as the Me_2SnN_2 plane and define V_{11} as the field gradient in the direction of the bisector of projection which two Sn-Me bonds form on the plane, and V_{33} , as that in the normal direction of the plane (see Fig. 1). The direction

of V_{22} is normal with regard to V_{11} and V_{33} . The Me-Sn-Me angle is opened out to 111°, so that V_{zz} can be expected to coincide with V_{22} . However, the uncertainty as to the directions of V_{xx} and V_{yy} remains.

We shall refer only to the I site in the following discussion. Two possible cases are considered:

$$V_{xx}//V_{11}$$
, $V_{yy}//V_{33}$, and $V_{zz}//V_{22}$ (i)

$$V_{xx}//V_{33}$$
, $V_{yy}//V_{11}$, and $V_{zz}//V_{22}$ (ii)

The Euler angles for (i) and (ii) are $\alpha = 93^{\circ}$, $\beta = 128^{\circ}$, and $\gamma = 135^{\circ}$ and $\alpha = 93^{\circ}$, $\beta = 128^{\circ}$, and $\gamma = 45^{\circ}$ respectively (the corresponding values for the II site are obtained by the transformation of $(\alpha, \beta, \gamma) \rightarrow (\alpha, \pi - \beta, \pi - \beta)$ γ) in each case). Though the point symmetry of the tin sites imposes no restrictions on η , the value of η is expected to be large judging from the point-charge model (cf. Fig. 3 in Ref. 4). This value is seen, along with the values of α , β , and γ , in the $V_{zz} < 0$ range in Fig. 3. The solutions for $86^{\circ} \leqslant \psi \leqslant 132^{\circ}$ correspond to (i), and those for $132^{\circ} \le \psi < 177^{\circ}$, to (ii). The α values in the range of the former are closer to 93° than those of the latter. This suggests that the direction of the principal axes of the EFG may be as in Case (i). If η is found by an additional investigation, as in the case of FeCl₂·4H₂O,¹¹⁾ the precise orientation of the EFG axes can be established.

References

- 1) B. W. Fitzsimmons, J. Chem. Soc., A, 1970, 3235.
- 2) B. A. Goodman and N. N. Greenwood, J. Chem. Soc., A, 1971, 1862.
- 3) B. A. Goodman, N. N. Greenwood, K. L. Jaura, and K. K. Sharma, *J. Chem. Soc.*, A, 1971, 1865.
- 4) R. V. Parish and C. E. Johnson, *J. Chem. Soc.*, A, **1971**, 1906.
 - 5) P. Zory, Phys. Rev. A, 140, 1401 (1965).
 - 6) K. Chandra and S. P. Puri, Phys. Rev., 162, 272 (1968).
- 7) R. W. Grant, R. M. Housley, and U. Gonsor, *Phys. Rev.*, **178**, 523 (1969).
 - 8) T. C. Gibb, J. Phys. C, 7, 1001 (1974).
 - 9) T. C. Gibb, J. Chem. Soc., Dalton Trans., 1976, 1237.
- 10) H. Negita, R. Boku, M. Nakamura, and S. Ichiba, Bull. Chem. Soc. Jpn., 50, 584 (1977).
- 11) R. Zimmermann, Nucl. Instrum. Methods, 128, 537 (1975).
- 12) T. C. Gibb, J. Chem. Soc., Dalton Trans., 1978, 743.
- 13) E. O. Schlemper, Inorg. Chem., 6, 2012 (1967).